Перевод: со всех языков на английский

с английского на все языки

photographic cameras

  • 1 фотоапарат

    photographic apparatus
    photographic apparatuses
    photographic camera
    photographic cameras

    Български-Angleščina политехнически речник > фотоапарат

  • 2 Steinheil, Carl August von

    [br]
    b. 1801 Roppoltsweiler, Alsace
    d. 1870 Munich, Germany
    [br]
    German physicist, founder of electromagnetic telegraphy in Austria, and photographic innovator and lens designer.
    [br]
    Steinheil studied under Gauss at Göttingen and Bessel at Königsberg before jointing his parents at Munich. There he concentrated on optics before being appointed Professor of Physics and Mathematics at the University of Munich in 1832. Immediately after the announcement of the first practicable photographic processes in 1839, he began experiments on photography in association with another professor at the University, Franz von Kobell. Steinheil is reputed to have made the first daguerreotypes in Germany; he certainly constructed several cameras of original design and suggested minor improvements to the daguerreotype process. In 1849 he was employed by the Austrian Government as Head of the Department of Telegraphy in the Ministry of Commerce. Electromagnetic telegraphy was an area in which Steinheil had worked for several years previously, and he was now appointed to supervise the installation of a working telegraphic system for the Austrian monarchy. He is considered to be the founder of electromagnetic telegraphy in Austria and went on to perform a similar role in Switzerland.
    Steinheil's son, Hugo Adolph, was educated in Munich and Augsburg but moved to Austria to be with his parents in 1850. Adolph completed his studies in Vienna and was appointed to the Telegraph Department, headed by his father, in 1851. Adolph returned to Munich in 1852, however, to concentrate on the study of optics. In 1855 the father and son established the optical workshop which was later to become the distinguished lens-manufacturing company C.A. Steinheil Söhne. At first the business confined itself almost entirely to astronomical optics, but in 1865 the two men took out a joint patent for a wide-angle photographic lens claimed to be free of distortion. The lens, called the "periscopic", was not in fact free from flare and not achromatic, although it enjoyed some reputation at the time. Much more important was the achromatic development of this lens that was introduced in 1866 and called the "Aplanet"; almost simultaneously a similar lens, the "Rapid Rentilinear", was introduced by Dallmeyer in England, and for many years lenses of this type were fitted as the standard objective on most photographic cameras. During 1866 the elder Steinheil relinquished his interest in lens manufacturing, and control of the business passed to Adolph, with administrative and financial affairs being looked after by another son, Edward. After Carl Steinheil's death Adolph continued to design and market a series of high-quality photographic lenses until his own death.
    [br]
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York (a general account of the Steinheils's work).
    Most accounts of photographic lens history will give details of the Steinheils's more important work. See, for example, Chapman Jones, 1904, Science and Practice of Photography, 4th edn, London: and Rudolf Kingslake, 1989, A History of the Photographic Lens, Boston.
    JW

    Biographical history of technology > Steinheil, Carl August von

  • 3 cámara fotográfica

    f.
    photographic camera, still camera, camera.
    * * *
    camera
    * * *
    * * *
    * * *
    Ex. Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.
    * * *
    * * *

    Ex: Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.

    * * *
    camera

    Spanish-English dictionary > cámara fotográfica

  • 4 Petzval, Josef Max

    [br]
    b. 1807 Spisska-Beila, Hungary
    d. 17 September 1891 Vienna, Austria
    [br]
    Hungarian mathematician and photographic-lens designer, inventor of the first "rapid" portrait lens.
    [br]
    Although born in Hungary, Petzval was the son of German schoolteacher. He studied engineering at the University of Budapest and after graduation was appointed to the staff as a lecturer. In 1835 he became the University's Professor of Higher Mathematics. Within a year he was offered a similar position at the more prestigious University of Vienna, a chair he was to occupy until 1884.
    The earliest photographic cameras were fitted with lenses originally designed for other optical instruments. All were characterized by small apertures, and the long exposures required by the early process were in part due to the "slow" lenses. As early as 1839, Petzval began calculations with the idea of producing a fast achromatic objective for photographic work. For technical advice he turned to the Viennese optician Peter Voigtländer, who went on to make the first Petzval portrait lens in 1840. It had a short focal length but an extremely large aperture for the day, enabling exposure times to be reduced to at least one tenth of that required with other contemporary lenses. The Petzval portrait lens was to become the basic design for years to come and was probably the single most important development in making portrait photography possible; by capturing public imagination, portrait photography was to drive photographic innovation during the early years.
    Petzval later fell out with Voigtländer and severed his connection with the company in 1845. When Petzval was encouraged to design a landscape lens in the 1850s, the work was entrusted to another Viennese optician, Dietzler. Using some early calculations by Petzval, Voigtländer was able to produce a similar lens, which he marketed in competition, and an acrimonious dispute ensued. Petzval, embittered by the quarrel and depressed by a burglary which destroyed years of records of his optical work, abandoned optics completely in 1862 and devoted himself to acoustics. He retired from his professorship on his seventieth birthday, respected by his colleagues but unloved, and lived the life of a recluse until his death.
    [br]
    Principal Honours and Distinctions
    Member of the Hungarian Academy of Science 1873.
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York (provides details of Petzval's life and work; Eder claims he was introduced to Petzval by mutual friends and succeeded in obtaining personal data).
    Rudolf Kingslake, 1989, A History of the Photographic Lens, Boston (brief biographical details).
    L.W.Sipley, 1965, Photography's Great Inventors, Philadelphia (brief biographical details).
    JW

    Biographical history of technology > Petzval, Josef Max

  • 5 acelerador de partículas atómicas

    Ex. Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.
    * * *

    Ex: Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.

    Spanish-English dictionary > acelerador de partículas atómicas

  • 6 lámpara de rayos ultravioleta

    (n.) = ultraviolet lamp, sun lamp, UV lamp
    Ex. Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.
    Ex. There's no safe way to get a tan -- just like the sun, tanning beds and sun lamps release ultraviolet (UV) rays that trigger the tanning process in the skin.
    Ex. In terrariums, UV lamps are used so that plants and animals, especially reptiles, get enough of the required UV light they may need each day.
    * * *
    (n.) = ultraviolet lamp, sun lamp, UV lamp

    Ex: Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.

    Ex: There's no safe way to get a tan -- just like the sun, tanning beds and sun lamps release ultraviolet (UV) rays that trigger the tanning process in the skin.
    Ex: In terrariums, UV lamps are used so that plants and animals, especially reptiles, get enough of the required UV light they may need each day.

    Spanish-English dictionary > lámpara de rayos ultravioleta

  • 7 microscopía

    f.
    1 microscopy.
    2 microscopy.
    * * *
    * * *
    Ex. Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.
    ----
    * especialista en microscopia = microscopist.
    * * *

    Ex: Scientific equipment for the examination of rare books, manuscripts, and documents include the atomic particle accelerator; electron microscopy; photographic cameras, and ultraviolet lamps.

    * especialista en microscopia = microscopist.

    * * *
    microscopy
    * * *
    microscopy

    Spanish-English dictionary > microscopía

  • 8 Fotoartikel

    Pl. photographic equipment Sg., cameras and accessories
    * * *
    Fo|to|ar|ti|kel
    pl
    photographic equipment sing
    * * *
    Fo·to·ar·ti·kel
    m item of photographic equipment
    * * *
    Fotoartikel pl photographic equipment sg, cameras and accessories

    Deutsch-Englisch Wörterbuch > Fotoartikel

  • 9 Ives, Frederic Eugene

    [br]
    b. 17 February 1856 Litchfield, Connecticut, USA
    d. 27 May 1937 Philadelphia, Pennsylvania, USA
    [br]
    American printer who pioneered the development of photomechanical and colour photographic processes.
    [br]
    Ives trained as a printer in Ithaca, New York, and became official photographer at Cornell University at the age of 18. His research into photomechanical processes led in 1886 to methods of making halftone reproduction of photographs using crossline screens. In 1881 he was the first to make a three-colour print from relief halftone blocks. He made significant contributions to the early development of colour photography, and from 1888 he published and marketed a number of systems for the production of additive colour photographs. He designed a beam-splitting camera in which a single lens exposed three negatives through red, green and blue filters. Black and white transparencies from these negatives were viewed in a device fitted with internal reflectors and filters, which combined the three colour separations into one full-colour image. This device was marketed in 1895 under the name Kromskop; sets of Kromograms were available commercially, and special cameras, or adaptors for conventional cameras, were available for photographers who wished to take their own colour pictures. A Lantern Kromskop was available for the projection of Kromskop pictures. Ives's system enjoyed a few years of commercial success before simpler methods of making colour photographs rendered it obsolete. Ives continued research into colour photography; his later achievements included the design, in 1915, of the Hicro process, in which a simple camera produced sets of separation negatives that could be printed as dyed transparencies in complementary colours and assembled in register on paper to produce colour prints. Later, in 1932, he introduced Polychrome, a simpler, two-colour process in which a bipack of two thin negative plates or films could be exposed in conventional cameras. Ives's interest extended into other fields, notably stereoscopy. He developed a successful parallax stereogram process in 1903, in which a three-dimensional image could be seen directly, without the use of viewing devices. In his lifetime he received many honours, and was a recipient of the Royal Photographic Society's Progress Medal in 1903 for his work in colour photography.
    [br]
    Further Reading
    B.Coe, 1978, Colour Photography: The First Hundred Years, London J.S.Friedman, 1944, History of Colour Photography, Boston. G.Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Ives, Frederic Eugene

  • 10 Marey, Etienne-Jules

    [br]
    b. 5 March 1830 Beaune, France
    d. 15 May 1904 Paris, France
    [br]
    French physiologist and pioneer of chronophotography.
    [br]
    At the age of 19 Marey went to Paris to study medicine, becoming particularly interested in the problems of the circulation of the blood. In an early communication to the Académie des Sciences he described a much improved device for recording the pulse, the sphygmograph, in which the beats were recorded on a smoked plate. Most of his subsequent work was concerned with methods of recording movement: to study the movement of the horse, he used pneumatic sensors on each hoof to record traces on a smoked drum; this device became known as the Marey recording tambour. His attempts to study the wing movements of a bird in flight in the same way met with limited success since the recording system interfered with free movement. Reading in 1878 of Muybridge's work in America using sequence photography to study animal movement, Marey considered the use of photography himself. In 1882 he developed an idea first used by the astronomer Janssen: a camera in which a series of exposures could be made on a circular photographic plate. Marey's "photographic gun" was rifle shaped and could expose twelve pictures in approximately one second on a circular plate. With this device he was able to study wing movements of birds in free flight. The camera was limited in that it could record only a small number of images, and in the summer of 1882 he developed a new camera, when the French government gave him a grant to set up a physiological research station on land provided by the Parisian authorities near the Porte d'Auteuil. The new design used a fixed plate, on which a series of images were recorded through a rotating shutter. Looking rather like the results provided by a modern stroboscope flash device, the images were partially superimposed if the subject was slow moving, or separated if it was fast. His human subjects were dressed all in white and moved against a black background. An alternative was to dress the subject in black, with highly reflective strips and points along limbs and at joints, to produce a graphic record of the relationships of the parts of the body during action. A one-second-sweep timing clock was included in the scene to enable the precise interval between exposures to be assessed. The fixed-plate cameras were used with considerable success, but the number of individual records on each plate was still limited. With the appearance of Eastman's Kodak roll-film camera in France in September 1888, Marey designed a new camera to use the long rolls of paper film. He described the new apparatus to the Académie des Sciences on 8 October 1888, and three weeks later showed a band of images taken with it at the rate of 20 per second. This camera and its subsequent improvements were the first true cinematographic cameras. The arrival of Eastman's celluloid film late in 1889 made Marey's camera even more practical, and for over a decade the Physiological Research Station made hundreds of sequence studies of animals and humans in motion, at rates of up to 100 pictures per second. Marey pioneered the scientific study of movement using film cameras, introducing techniques of time-lapse, frame-by-frame and slow-motion analysis, macro-and micro-cinematography, superimposed timing clocks, studies of airflow using smoke streams, and other methods still in use in the 1990s. Appointed Professor of Natural History at the Collège de France in 1870, he headed the Institut Marey founded in 1898 to continue these studies. After Marey's death in 1904, the research continued under the direction of his associate Lucien Bull, who developed many new techniques, notably ultra-high-speed cinematography.
    [br]
    Principal Honours and Distinctions
    Foreign member of the Royal Society 1898. President, Académie des Sciences 1895.
    Bibliography
    1860–1904, Comptes rendus de l'Académie des Sciences de Paris.
    1873, La Machine animale, Paris 1874, Animal Mechanism, London.
    1893, Die Chronophotographie, Berlin. 1894, Le Mouvement, Paris.
    1895, Movement, London.
    1899, La Chronophotographie, Paris.
    Further Reading
    ——1992, Muybridge and the Chronophotographers, London. Jacques Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris.
    BC / MG

    Biographical history of technology > Marey, Etienne-Jules

  • 11 Fotosachen

    Pl. umg. cameras and lenses, photographic gear Sg.
    * * *
    Fotosachen pl umg cameras and lenses, photographic gear sg

    Deutsch-Englisch Wörterbuch > Fotosachen

  • 12 Sutton, Thomas

    [br]
    b. 1819 England
    d. 1875 Jersey, Channel Islands
    [br]
    English photographer and writer on photography.
    [br]
    In 1841, while studying at Cambridge, Sutton became interested in photography and tried out the current processes, daguerreotype, calotype and cyanotype among them. He subsequently settled in Jersey, where he continued his photographic studies. In 1855 he opened a photographic printing works in Jersey, in partnership with L.-D. Blanquart- Evrard, exploiting the latter's process for producing developed positive prints. He started and edited one of the first photographic periodicals, Photographic Notes, in 1856; until its cessation in 1867, his journal presented a fresher view of the world of photography than that given by its London-based rivals. He also drew up the first dictionary of photography in 1858.
    In 1859 Sutton designed and patented a wideangle lens in which the space between two meniscus lenses, forming parts of a sphere and sealed in a metal rim, was filled with water; the lens so formed could cover an angle of up to 120 degrees at an aperture of f12. Sutton's design was inspired by observing the images produced by the water-filled sphere of a "snowstorm" souvenir brought home from Paris! Sutton commissioned the London camera-maker Frederick Cox to make the Panoramic camera, demonstrating the first model in January 1860; it took panoramic pictures on curved glass plates 152×381 mm in size. Cox later advertised other models in a total of four sizes. In January 1861 Sutton handed over manufacture to Andrew Ross's son Thomas Ross, who produced much-improved lenses and also cameras in three sizes. Sutton then developed the first single-lens reflex camera design, patenting it on 20 August 1961: a pivoted mirror, placed at 45 degrees inside the camera, reflected the image from the lens onto a ground glass-screen set in the top of the camera for framing and focusing. When ready, the mirror was swung up out of the way to allow light to reach the plate at the back of the camera. The design was manufactured for a few years by Thomas Ross and J.H. Dallmeyer.
    In 1861 James Clerk Maxwell asked Sutton to prepare a series of photographs for use in his lecture "On the theory of three primary colours", to be presented at the Royal Institution in London on 17 May 1861. Maxwell required three photographs to be taken through red, green and blue filters, which were to be printed as lantern slides and projected in superimposition through three projectors. If his theory was correct, a colour reproduction of the original subject would be produced. Sutton used liquid filters: ammoniacal copper sulphate for blue, copper chloride for the green and iron sulphocyanide for the red. A fourth exposure was made through lemon-yellow glass, but was not used in the final demonstration. A tartan ribbon in a bow was used as the subject; the wet-collodion process in current use required six seconds for the blue exposure, about twice what would have been needed without the filter. After twelve minutes no trace of image was produced through the green filter, which had to be diluted to a pale green: a twelve-minute exposure then produced a serviceable negative. Eight minutes was enough to record an image through the red filter, although since the process was sensitive only to blue light, nothing at all should have been recorded. In 1961, R.M.Evans of the Kodak Research Laboratory showed that the red liquid transmitted ultraviolet radiation, and by an extraordinary coincidence many natural red dye-stuffs reflect ultraviolet. Thus the red separation was made on the basis of non-visible radiation rather than red, but the net result was correct and the projected images did give an identifiable reproduction of the original. Sutton's photographs enabled Maxwell to establish the validity of his theory and to provide the basis upon which all subsequent methods of colour photography have been founded.
    JW / BC

    Biographical history of technology > Sutton, Thomas

  • 13 Muybridge, Eadweard

    [br]
    b. 9 April 1830 Kingston upon Thames, England
    d. 8 May 1904 Kingston upon Thames, England
    [br]
    English photographer and pioneer of sequence photography of movement.
    [br]
    He was born Edward Muggeridge, but later changed his name, taking the Saxon spelling of his first name and altering his surname, first to Muygridge and then to Muybridge. He emigrated to America in 1851, working in New York in bookbinding and selling as a commission agent for the London Printing and Publishing Company. Through contact with a New York daguerreotypist, Silas T.Selleck, he acquired an interest in photography that developed after his move to California in 1855. On a visit to England in 1860 he learned the wet-collodion process from a friend, Arthur Brown, and acquired the best photographic equipment available in London before returning to America. In 1867, under his trade pseudonym "Helios", he set out to record the scenery of the Far West with his mobile dark-room, christened "The Flying Studio".
    His reputation as a photographer of the first rank spread, and he was commissioned to record the survey visit of Major-General Henry W.Halleck to Alaska and also to record the territory through which the Central Pacific Railroad was being constructed. Perhaps because of this latter project, he was approached by the President of the Central Pacific, Leland Stanford, to attempt to photograph a horse trotting at speed. There was a long-standing controversy among racing men as to whether a trotting horse had all four hooves off the ground at any point; Stanford felt that it did, and hoped than an "instantaneous" photograph would settle the matter once and for all. In May 1872 Muybridge photographed the horse "Occident", but without any great success because the current wet-collodion process normally required many seconds, even in a good light, for a good result. In April 1873 he managed to produce some better negatives, in which a recognizable silhouette of the horse showed all four feet above the ground at the same time.
    Soon after, Muybridge left his young wife, Flora, in San Francisco to go with the army sent to put down the revolt of the Modoc Indians. While he was busy photographing the scenery and the combatants, his wife had an affair with a Major Harry Larkyns. On his return, finding his wife pregnant, he had several confrontations with Larkyns, which culminated in his shooting him dead. At his trial for murder, in February 1875, Muybridge was acquitted by the jury on the grounds of justifiable homicide; he left soon after on a long trip to South America.
    He again took up his photographic work when he returned to North America and Stanford asked him to take up the action-photography project once more. Using a new shutter design he had developed while on his trip south, and which would operate in as little as 1/1,000 of a second, he obtained more detailed pictures of "Occident" in July 1877. He then devised a new scheme, which Stanford sponsored at his farm at Palo Alto. A 50 ft (15 m) long shed was constructed, containing twelve cameras side by side, and a white background marked off with vertical, numbered lines was set up. Each camera was fitted with Muybridge's highspeed shutter, which was released by an electromagnetic catch. Thin threads stretched across the track were broken by the horse as it moved along, closing spring electrical contacts which released each shutter in turn. Thus, in about half a second, twelve photographs were obtained that showed all the phases of the movement.
    Although the pictures were still little more than silhouettes, they were very sharp, and sequences published in scientific and photographic journals throughout the world excited considerable attention. By replacing the threads with an electrical commutator device, which allowed the release of the shutters at precise intervals, Muybridge was able to take series of actions by other animals and humans. From 1880 he lectured in America and Europe, projecting his results in motion on the screen with his Zoopraxiscope projector. In August 1883 he received a grant of $40,000 from the University of Pennsylvania to carry on his work there. Using the vastly improved gelatine dry-plate process and new, improved multiple-camera apparatus, during 1884 and 1885 he produced over 100,000 photographs, of which 20,000 were reproduced in Animal Locomotion in 1887. The subjects were animals of all kinds, and human figures, mostly nude, in a wide range of activities. The quality of the photographs was extremely good, and the publication attracted considerable attention and praise.
    Muybridge returned to England in 1894; his last publications were Animals in Motion (1899) and The Human Figure in Motion (1901). His influence on the world of art was enormous, over-turning the conventional representations of action hitherto used by artists. His work in pioneering the use of sequence photography led to the science of chronophotography developed by Marey and others, and stimulated many inventors, notably Thomas Edison to work which led to the introduction of cinematography in the 1890s.
    [br]
    Bibliography
    1887, Animal Locomotion, Philadelphia.
    1893, Descriptive Zoopraxography, Pennsylvania. 1899, Animals in Motion, London.
    Further Reading
    1973, Eadweard Muybridge: The Stanford Years, Stanford.
    G.Hendricks, 1975, Muybridge: The Father of the Motion Picture, New York. R.Haas, 1976, Muybridge: Man in Motion, California.
    BC

    Biographical history of technology > Muybridge, Eadweard

  • 14 Anschütz, Ottomar

    [br]
    b. 1846 Lissa, Prussia (now Leszno, Poland) d. 1907
    [br]
    German photographer, chronophotographer ana inventor.
    [br]
    The son of a commercial photographer, Anschütz entered the business in 1868 and developed an interest in the process of instantaneous photography. The process was very difficult with the contemporary wet-plate process, but with the introduction of the much faster dry plates in the late 1870s he was able to make progress. Anschütz designed a focal plane shutter capable of operating at speeds up to 1/1000 of a second in 1883, and patented his design in 1888. it involved a vertically moving fabric roller-blind that worked at a fixed tension but had a slit the width of which could be adjusted to alter the exposure time. This design was adopted by C.P.Goerz, who from 1890 manufactures a number of cameras that incorporated it.
    Anschütz's action pictures of flying birds and animals attracted the attention of the Prussian authorities, and in 1886 the Chamber of Deputies authorized financial support for him to continue his work, which had started at the Hanover Military Institute in October 1885. Inspired by the work of Eadweard Muybridge in America, Anschütz had set up rows of cameras whose focal-plane shutters were released in sequence by electromagnets, taking twenty-four pictures in about three-quarters of a second. He made a large number of studies of the actions of people, animals and birds, and at the Krupp artillery range at Meppen, near Essen, he recorded shells in flight. His pictures were reproduced, and favourably commented upon, in scientific and photographic journals.
    To bring the pictures to the public, in 1887 he created the Electro-Tachyscope. The sequence negatives were printed as 90 x 120 mm transparencies and fixed around the circumference of a large steel disc. This was rotated in front of a spirally wound Geissler tube, which produced a momentary brilliant flash of light when a high voltage from an induction coil was applied to it, triggered by contacts on the steel disc. The flash duration, about 1/1000 of a second, was so short that it "froze" each picture as it passed the tube. The pictures succeeded each other at intervals of about 1/30 of a second, and the observer saw an apparently continuously lit moving picture. The Electro-Tachyscope was shown publicly in Berlin at the Kulturministerium from 19 to 21 March 1887; subsequently Siemens \& Halske manufactured 100 machines, which were shown throughout Europe and America in the early 1890s. From 1891 his pictures were available for the home in the form of the Tachyscope viewer, which used the principle of the zoetrope: sequence photographs were printed on long strips of thin card, perforated with narrow slots between the pictures. Placed around the circumference of a shallow cylinder and rotated, the pictures could be seen in life-like movement when viewed through the slots.
    In November 1894 Anschütz displayed a projector using two picture discs with twelve images each, which through a form of Maltese cross movement were rotated intermittently and alternately while a rotating shutter allowed each picture to blend with the next so that no flicker occurred. The first public shows, given in Berlin, were on a screen 6×8 m (20×26 ft) in size. From 22 February 1895 they were shown regularly to audiences of 300 in a building on the Leipzigstrasse; they were the first projected motion pictures seen in Germany.
    [br]
    Further Reading
    J.Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. B.Coe, 1992, Muybridge and the Chronophotographers, London.
    BC

    Biographical history of technology > Anschütz, Ottomar

  • 15 Eastman, George

    [br]
    b. 12 July 1854 Waterville, New York, USA
    d. 14 March 1932 Rochester, New York, USA
    [br]
    American industrialist and pioneer of popular photography.
    [br]
    The young Eastman was a clerk-bookkeeper in the Rochester Savings Bank when in 1877 he took up photography. Taking lessons in the wet-plate process, he became an enthusiastic amateur photographer. However, the cumbersome equipment and noxious chemicals used in the process proved an obstacle, as he said, "It seemed to be that one ought to be able to carry less than a pack-horse load." Then he came across an account of the new gelatine dry-plate process in the British Journal of Photography of March 1878. He experimented in coating glass plates with the new emulsions, and was soon so successful that he decided to go into commercial manufacture. He devised a machine to simplify the coating of the plates, and travelled to England in July 1879 to patent it. In April 1880 he prepared to begin manufacture in a rented building in Rochester, and contacted the leading American photographic supply house, E. \& H.T.Anthony, offering them an option as agents. A local whip manufacturer, Henry A.Strong, invested $1,000 in the enterprise and the Eastman Dry Plate Company was formed on 1 January 1881. Still working at the Savings Bank, he ran the business in his spare time, and demand grew for the quality product he was producing. The fledgling company survived a near disaster in 1882 when the quality of the emulsions dropped alarmingly. Eastman later discovered this was due to impurities in the gelatine used, and this led him to test all raw materials rigorously for quality. In 1884 the company became a corporation, the Eastman Dry Plate \& Film Company, and a new product was announced. Mindful of his desire to simplify photography, Eastman, with a camera maker, William H.Walker, designed a roll-holder in which the heavy glass plates were replaced by a roll of emulsion-coated paper. The holders were made in sizes suitable for most plate cameras. Eastman designed and patented a coating machine for the large-scale production of the paper film, bringing costs down dramatically, the roll-holders were acclaimed by photographers worldwide, and prizes and medals were awarded, but Eastman was still not satisfied. The next step was to incorporate the roll-holder in a smaller, hand-held camera. His first successful design was launched in June 1888: the Kodak camera. A small box camera, it held enough paper film for 100 circular exposures, and was bought ready-loaded. After the film had been exposed, the camera was returned to Eastman's factory, where the film was removed, processed and printed, and the camera reloaded. This developing and printing service was the most revolutionary part of his invention, since at that time photographers were expected to process their own photographs, which required access to a darkroom and appropriate chemicals. The Kodak camera put photography into the hands of the countless thousands who wanted photographs without complications. Eastman's marketing slogan neatly summed up the advantage: "You Press the Button, We Do the Rest." The Kodak camera was the last product in the design of which Eastman was personally involved. His company was growing rapidly, and he recruited the most talented scientists and technicians available. New products emerged regularly—notably the first commercially produced celluloid roll film for the Kodak cameras in July 1889; this material made possible the introduction of cinematography a few years later. Eastman's philosophy of simplifying photography and reducing its costs continued to influence products: for example, the introduction of the one dollar, or five shilling, Brownie camera in 1900, which put photography in the hands of almost everyone. Over the years the Eastman Kodak Company, as it now was, grew into a giant multinational corporation with manufacturing and marketing organizations throughout the world. Eastman continued to guide the company; he pursued an enlightened policy of employee welfare and profit sharing decades before this was common in industry. He made massive donations to many concerns, notably the Massachusetts Institute of Technology, and supported schemes for the education of black people, dental welfare, calendar reform, music and many other causes, he withdrew from the day-to-day control of the company in 1925, and at last had time for recreation. On 14 March 1932, suffering from a painful terminal cancer and after tidying up his affairs, he shot himself through the heart, leaving a note: "To my friends: My work is done. Why wait?" Although Eastman's technical innovations were made mostly at the beginning of his career, the organization which he founded and guided in its formative years was responsible for many of the major advances in photography over the years.
    [br]
    Further Reading
    C.Ackerman, 1929, George Eastman, Cambridge, Mass.
    BC

    Biographical history of technology > Eastman, George

См. также в других словарях:

  • Photographic plate — Photographic plates preceded photographic film as a mean of photography. A light sensitive emulsion of silver salts was applied to a glass plate. This form of photographic material largely faded from the consumer market in the early years of the… …   Wikipedia

  • Photographic lens — A photographic lens (also known as objective lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media… …   Wikipedia

  • Photographic film — This article is mainly concerned with still photography film. For motion picture film, please see film stock. Photographic film is a sheet of plastic (polyester, nitrocellulose or cellulose acetate) coated with an emulsion containing light… …   Wikipedia

  • Photographic paper — This article is about light sensitive photographic media. For digital printing media, see Photo printer and Inkjet paper. Photographic paper is paper coated with light sensitive chemicals, used for making photographic prints. Photographic paper… …   Wikipedia

  • Photographic filter — Four photographic filters. Clockwise, from top left, an infrared hot mirror filter, a polarising filter, and a UV filter. The larger filter is a polariser for Cokin style filter mounts. In photography and videography, a filter is a camera… …   Wikipedia

  • Cameras — Camera Cam e*ra, n.; pl. E. {Cameras}, L. {Camerae}. [L. vault, arch, LL., chamber. See {Chamber}.] A chamber, or instrument having a chamber. Specifically: The {camera obscura} when used in photography. See {Camera}, and {Camera obscura}. [1913… …   The Collaborative International Dictionary of English

  • Lenses for SLR and DSLR cameras — This article is about photographic lenses for single lens reflex film cameras (SLRs) and digital single lens reflex cameras (DSLRs). Furthermore, the emphasis is on modern lenses for 35 mm film SLRs and for DSLRs with sensor sizes less than or… …   Wikipedia

  • List of photographic equipment makers — This list of photographic equipment makers lists companies that manufacture (or license manufacture from other companies) equipment for photography. Camera and lens manufacturers Note that producers whose only presence in the photo industry at… …   Wikipedia

  • Pentax cameras — This article discusses the cameras – mainly 35 mm SLRs – manufactured by Hoya Corporation s Pentax division (ペンタックス, Pentakkusu?) and its predecessors, Pentax Corporation (ペンタックス株式会社, Pentakkusu Kabushiki gaisha …   Wikipedia

  • Ebony cameras — The Ebony camera company was founded by Japanese photographer Hiromi Sakanashi in 1981. The Sakanashi family has been in the photographic business since 1871, when Hiromi Sakanashi s great grandfather founded one of Japan s first photographic… …   Wikipedia

  • Comparison of digital single-lens reflex cameras — This list is incomplete; you can help by expanding it. Following list compares main features of digital single lens reflex cameras (DSLRs). Order of this list should be firstly by manufacturer alphabetically, secondly from high end to low end… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»